搜索内容 搜索用户

# [已答复] 关于函数或者变量无法识别的问题

Fighting's6 发表于 2021-11-25 10:03:17
 %% % Sort zenith angles of interior pixels into descending order [~ , idx ]= sort ( theta ( interior ) ,1 , 'descend '); [ col , row ]= meshgrid (1: cols ,1: rows ); r = row ( interior ); c = col ( interior ); % At each iteration , we choose the unprocessed pixel with smallest zenith % angle that has at least one neighbour while ~ isempty ( idx )     flag = false ;     selected = 1;     % Consider pixels in ranked - theta order to find first one with at least     % one neighbour ( over 7x7 neighbourhood )     while ~ flag         neighbourhood = [];         for i = -3:3             for j = -3:3                 if (i ~=0) || (j ~=0)                     if available_estimates ( r( idx ( selected ))+ i , ...                                              c( idx ( selected ))+ j)                        neighbourhood = [ neighbourhood ;                                          r( idx ( selected ))+ i c ( idx ( selected ))+ j ];                     end                 end             end         end         if ~ isempty ( neighbourhood )             % We need at least one neighbour to test smoothness             flag = true ;         else             selected = selected +1;         end     end     % We now have a pixel with at least one neighbour     r=r ( idx ( selected ));     c=c ( idx ( selected ));     % Select the normals from the neighbourhood     Ns =[];     for i =1: size ( neighbourhood ,1)         Ns = [ Ns ;             N( neighbourhood (i ,1) , neighbourhood (i ,2) ,1) ...             N( neighbourhood (i ,1) , neighbourhood (i ,2) ,2) ...             N( neighbourhood (i ,1) , neighbourhood (i ,2) ,3)];     end     % Compute which local solution has smaller mean angular deviation from     % its neighbours , our definition of smoothness     n1 = [ sin ( phi (r ,c ))* sin ( theta (r ,c ));         cos ( phi (r , c ))* sin ( theta (r ,c ));         cos ( theta (r ,c ))];     n2 = [ sin ( phi (r ,c )+ pi )* sin ( theta (r , c ));         cos ( phi (r , c )+ pi )* sin ( theta (r ,c ));         cos ( theta (r ,c ))];     % Select smoothest disambiguation and store chosen normal     if mean ( acos ( Ns * n1 )) < mean ( acos ( Ns * n2 ))         N(r ,c ,:)= n1 ;     else         N(r ,c ,:)= n2 ;     end     available_estimates (r ,c )= true ;     idx ( selected )=[]; end

1 条回复

## 倒序浏览

matbir 发表于 2021-11-25 21:19:56
 报错信息发一下呀
 您需要登录后才可以回帖 登录 | 注册 本版积分规则 回帖后跳转到最后一页